This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017437 #38 Sep 08 2022 08:44:42 %S A017437 4,15,26,37,48,59,70,81,92,103,114,125,136,147,158,169,180,191,202, %T A017437 213,224,235,246,257,268,279,290,301,312,323,334,345,356,367,378,389, %U A017437 400,411,422,433,444,455,466,477,488,499,510,521,532,543,554,565,576,587 %N A017437 a(n) = 11*n + 4. %C A017437 These numbers do not occur in A000045 (Fibonacci numbers). - _Arkadiusz Wesolowski_, Jan 08 2012 %H A017437 Vincenzo Librandi, <a href="/A017437/b017437.txt">Table of n, a(n) for n = 0..10000</a> %H A017437 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A017437 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A017437 a(0)=4, a(1)=15, a(n) = 2*a(n-1) - a(n-2). - _Harvey P. Dale_, May 19 2012 %F A017437 From _G. C. Greubel_, Sep 18 2019: (Start) %F A017437 G.f.: (4 + 7*x)/(1-x)^2. %F A017437 E.g.f.: (4 + 11*x)*exp(x). (End) %p A017437 seq(11*n+4, n=0..60); # _G. C. Greubel_, Sep 18 2019 %t A017437 Range[4, 1000, 11] (* _Vladimir Joseph Stephan Orlovsky_, May 28 2011 *) %t A017437 LinearRecurrence[{2,-1},{4,15},60] (* _Harvey P. Dale_, May 19 2012 *) %o A017437 (Sage) list(range(4, 600, 11)) # _Zerinvary Lajos_, May 21 2009 %o A017437 (Magma)[11*n+4: n in [0..60]]; // _Vincenzo Librandi_, Sep 18 2011 %o A017437 (PARI) a(n)=11*n+4 \\ _Charles R Greathouse IV_, Oct 07 2015 %o A017437 (GAP) List([0..60], n-> 11*n+4); # _G. C. Greubel_, Sep 18 2019 %Y A017437 Cf. A008593, A017425. %Y A017437 Powers of the form (11*n+4)^m: this sequence (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12). %K A017437 nonn,easy %O A017437 0,1 %A A017437 _N. J. A. Sloane_