cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017444 a(n) = (11*n + 4)^8.

This page as a plain text file.
%I A017444 #10 Sep 08 2022 08:44:42
%S A017444 65536,2562890625,208827064576,3512479453921,28179280429056,
%T A017444 146830437604321,576480100000000,1853020188851841,5132188731375616,
%U A017444 12667700813876161,28525864220672256,59604644775390625,117033789351264256,218041257467152161,388379855336079616
%N A017444 a(n) = (11*n + 4)^8.
%H A017444 G. C. Greubel, <a href="/A017444/b017444.txt">Table of n, a(n) for n = 0..1000</a>
%H A017444 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F A017444 From _G. C. Greubel_, Sep 18 2019: (Start)
%F A017444 G.f.: (65536 +2562300801*x +185763408247*x^2 +1725294430213*x^3 +3869465113539*x^4 +2447616620803*x^5 +401274300613*x^6 +10968077367*x^7 +5764801*x^8)/(1-x)^9.
%F A017444 E.g.f.: (65536 +2562825089*x +101850674431*x^2 +482281144422*x^3 +640503062661*x^4 +324861447834*x^5 +70908500586*x^6 +6625638140*x^7 +214358881*x^8)*exp(x). (End)
%p A017444 seq((11*n+4)^8, n=0..20); # _G. C. Greubel_, Sep 18 2019
%t A017444 (11*Range[0,20]+4)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36, -9,1}, {65536,2562890625,208827064576,3512479453921, 28179280429056, 146830437604321,576480100000000,1853020188851841,5132188731375616}, 20] (* _Harvey P. Dale_, Sep 21 2016 *)
%o A017444 (PARI) vector(20, n, (11*n-7)^8) \\ _G. C. Greubel_, Sep 18 2019
%o A017444 (Magma) [(11*n+4)^8: n in [0..20]]; // _G. C. Greubel_, Sep 18 2019
%o A017444 (Sage) [(11*n+4)^8 for n in (0..20)] # _G. C. Greubel_, Sep 18 2019
%o A017444 (GAP) List([0..20], n-> (11*n+4)^8); # _G. C. Greubel_, Sep 18 2019
%Y A017444 Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), this sequence (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
%K A017444 nonn,easy
%O A017444 0,1
%A A017444 _N. J. A. Sloane_
%E A017444 Terms a(12) onward added by _G. C. Greubel_, Sep 18 2019