cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017446 a(n) = (11*n + 4)^10.

This page as a plain text file.
%I A017446 #12 Sep 08 2022 08:44:42
%S A017446 1048576,576650390625,141167095653376,4808584372417849,
%T A017446 64925062108545024,511116753300641401,2824752490000000000,
%U A017446 12157665459056928801,43438845422363213824,134391637934412192049
%N A017446 a(n) = (11*n + 4)^10.
%H A017446 G. C. Greubel, <a href="/A017446/b017446.txt">Table of n, a(n) for n = 0..1000</a>
%H A017446 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F A017446 From _G. C. Greubel_, Sep 18 2019: (Start)
%F A017446 G.f.: (1048576 +576638856289*x +134823999028181*x^2 +3287461918700048*x^3 +19699677304461320*x^4 +38310933951284930*x^5 +26248927783563266*x^6 + 6054309522746024*x^7 +381447629946032*x^8 +3567359998885*x^9 +282475249* x^10)/(1-x)^11.
%F A017446 E.g.f.: (1048576 +576649342049*x +70006897960351*x^2 +731135505930170*x^3 +1938975858011665*x^4 +1943070823137213*x^5 +885930917929827*x^6 + 200558066497800*x^7 +23002851520110*x^8 +1261502014685*x^9 +25937424601* x^10)*exp(x). (End)
%p A017446 seq((11*n+4)^10, n=0..20); # _G. C. Greubel_, Sep 18 2019
%t A017446 (11*Range[0,20]+4)^10 (* _Harvey P. Dale_, Aug 30 2015 *)
%o A017446 (PARI) vector(20, n, (11*n-7)^10) \\ _G. C. Greubel_, Sep 18 2019
%o A017446 (Magma) [(11*n+4)^10: n in [0..20]]; // _G. C. Greubel_, Sep 18 2019
%o A017446 (Sage) [(11*n+4)^10 for n in (0..20)] # _G. C. Greubel_, Sep 18 2019
%o A017446 (GAP) List([0..20], n-> (11*n+4)^10); # _G. C. Greubel_, Sep 18 2019
%Y A017446 Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), this sequence (m=10), A017447 (m=11), A017448 (m=12).
%K A017446 nonn,easy
%O A017446 0,1
%A A017446 _N. J. A. Sloane_