This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017447 #12 Sep 08 2022 08:44:42 %S A017447 4194304,8649755859375,3670344486987776,177917621779460413, %T A017447 3116402981210161152,30155888444737842659,197732674300000000000, %U A017447 984770902183611232881,3996373778857415671808,13842338707244455781047 %N A017447 a(n) = (11*n + 4)^11. %H A017447 G. C. Greubel, <a href="/A017447/b017447.txt">Table of n, a(n) for n = 0..1000</a> %H A017447 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1). %F A017447 From _G. C. Greubel_, Sep 18 2019: (Start) %F A017447 G.f.: (4194304 +8649705527727*x +3566547693499340*x^2 +134444370899578971*x^3 +1221731311784947392*x^4 +3698421546351487230*x^5 +4212702849829094280*x^6 +1829094388304154510*x^7 +277265562864875904*x^8 +11429419348320083*x^9 +64244682158316*x^10 +1977326743*x^11)/(1-x)^12. %F A017447 E.g.f.: (4194304 +8649751665071*x +1826522489731665*x^2 +27822089596980151*x^3 +101113331749791790*x^4 +135969913003223882*x^5 +83388943309597233*x^6 +25990443483549897*x^7 +4322401071325920*x^8 +382966074233765*x^9 +16833388566049*x^10 +285311670611*x^11)*exp(x). (End) %p A017447 seq((11*n+4)^11, n=0..20); # _G. C. Greubel_, Sep 18 2019 %t A017447 (11Range[0,10]+4)^11 (* _Harvey P. Dale_, Jun 23 2013 *) %o A017447 (PARI) vector(20, n, (11*n-7)^11) \\ _G. C. Greubel_, Sep 18 2019 %o A017447 (Magma) [(11*n+4)^11: n in [0..20]]; // _G. C. Greubel_, Sep 18 2019 %o A017447 (Sage) [(11*n+4)^11 for n in (0..20)] # _G. C. Greubel_, Sep 18 2019 %o A017447 (GAP) List([0..20], n-> (11*n+4)^11); # _G. C. Greubel_, Sep 18 2019 %Y A017447 Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), this sequence (m=11), A017448 (m=12). %K A017447 nonn,easy %O A017447 0,1 %A A017447 _N. J. A. Sloane_