cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017455 a(n) = (11*n + 5)^7.

This page as a plain text file.
%I A017455 #18 Apr 22 2024 09:24:31
%S A017455 78125,268435456,10460353203,114415582592,678223072849,2799360000000,
%T A017455 9095120158391,24928547056768,60170087060757,131593177923584,
%U A017455 266001988046875,504189521813376,905824306333433,1555363874947072,2569093262823519,4103386730000000,6364290927201661,9618527719784448
%N A017455 a(n) = (11*n + 5)^7.
%H A017455 Vincenzo Librandi, <a href="/A017455/b017455.txt">Table of n, a(n) for n = 0..10000</a>
%H A017455 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F A017455 From _G. C. Greubel_, Sep 19 2019: (Start)
%F A017455 G.f.: (78125 +267810456*x +8315057055*x^2 +38244574736*x^3 +40761385011* x^4 +10218057336*x^5 +408099185*x^6 +279936*x^7)/(1-x)^8.
%F A017455 E.g.f.: (78125 +268357331*x +4961780208*x^2 +13973291871*x^3 + 11760383250*x^4 +3742825240*x^5 +471235226*x^6 +19487171*x^7)*exp(x). (End)
%p A017455 seq((11*n+5)^7, n=0..20); # _G. C. Greubel_, Sep 19 2019
%t A017455 (11*Range[21] -6)^7 (* _G. C. Greubel_, Sep 19 2019 *)
%t A017455 LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{78125,268435456,10460353203,114415582592,678223072849,2799360000000,9095120158391,24928547056768},20] (* _Harvey P. Dale_, Apr 22 2024 *)
%o A017455 (Magma) [(11*n+5)^7: n in [0..20]]; // _Vincenzo Librandi_, Sep 03 2011
%o A017455 (PARI) vector(20, n, (11*n-6)^7) \\ _G. C. Greubel_, Sep 19 2019
%o A017455 (Sage) [(11*n+5)^7 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019
%o A017455 (GAP) List([0..20], n-> (11*n+5)^7); # _G. C. Greubel_, Sep 19 2019
%Y A017455 Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), this sequence (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).
%K A017455 nonn,easy
%O A017455 0,1
%A A017455 _N. J. A. Sloane_