This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017460 #16 Sep 08 2022 08:44:42 %S A017460 244140625,281474976710656,150094635296999121,9065737908494995456, %T A017460 191581231380566414401,2176782336000000000000,16409682740640811134241, %U A017460 92420056270299898187776,418596297479370673535601,1601032218567680790102016 %N A017460 a(n) = (11*n + 5)^12. %H A017460 Vincenzo Librandi, <a href="/A017460/b017460.txt">Table of n, a(n) for n = 0..10000</a> %H A017460 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1). %F A017460 From _G. C. Greubel_, Sep 19 2019: (Start) %F A017460 G.f.: (244140625 +281471802882531*x +146435479642729343*x^2 + 7136462627993219301*x^3 +85353518454518704170*x^4 +350628073514443644414 *x^5 +569002784856695826846*x^6 +380284494715132979466*x^7 + 101126771751016700469*x^8 +9408164121360836975*x^9 +224644345794247731* x^10 +582593939059393*x^11 +2176782336*x^12)/(1-x)^13. %F A017460 E.g.f.: (244140625 +281474732570031*x +74765842793859217*x^2 + 1436049737881664906*x^3 +6509071735779405221*x^4 +10900283493364894200* x^5 +8393947455360064312*x^6 +3347919415332356436*x^7 + 736963256712968142*x^8 +91671288202929325*x^9 +6335345645917255*x^10 + 224254973100246*x^11 +3138428376721*x^12)*exp(x). (End) %p A017460 seq((11*n+5)^12, n=0..20); # _G. C. Greubel_, Sep 19 2019 %t A017460 (11*Range[21] -6)^12 (* _G. C. Greubel_, Sep 19 2019 *) %o A017460 (Magma) [(11*n+5)^12: n in [0..10]]; // _Vincenzo Librandi_, Sep 03 2011 %o A017460 (PARI) vector(20, n, (11*n-6)^12) \\ _G. C. Greubel_, Sep 19 2019 %o A017460 (Sage) [(11*n+5)^12 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019 %o A017460 (GAP) List([0..20], n-> (11*n+5)^12); # _G. C. Greubel_, Sep 19 2019 %Y A017460 Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), this sequence (m=12). %K A017460 nonn,easy %O A017460 0,1 %A A017460 _N. J. A. Sloane_