This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017463 #22 Sep 08 2022 08:44:42 %S A017463 216,4913,21952,59319,125000,226981,373248,571787,830584,1157625, %T A017463 1560896,2048383,2628072,3307949,4096000,5000211,6028568,7189057, %U A017463 8489664,9938375,11543176,13312053,15252992,17373979,19683000,22188041,24897088,27818127,30959144 %N A017463 a(n) = (11*n + 6)^3. %H A017463 Vincenzo Librandi, <a href="/A017463/b017463.txt">Table of n, a(n) for n = 0..10000</a> %H A017463 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A017463 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=216, a(1)=4913, a(2)=21952, a(3)=59319. - _Harvey P. Dale_, May 16 2012 %F A017463 From _G. C. Greubel_, Sep 19 2019: (Start) %F A017463 G.f.: (216 +4049*x +3596*x^2 +125*x^3)/(1-x)^4. %F A017463 E.g.f.: (216 +4697*x +6171*x^2 +1331*x^3)*exp(x). (End) %p A017463 seq((11*n+6)^3, n=0..40); # _G. C. Greubel_, Sep 19 2019 %t A017463 (* From _Harvey P. Dale_, May 16 2012 : (Start) *) %t A017463 (11Range[0,40]+6)^3 %t A017463 LinearRecurrence[{4,-6,4,-1}, {216,4913, 21952,59319}, 40] (* End *) %o A017463 (Magma) [(11*n+6)^3: n in [0..40]]; // _Vincenzo Librandi_, Sep 03 2011 %o A017463 (PARI) vector(40, n, (11*n-5)^3) \\ _G. C. Greubel_, Sep 19 2019 %o A017463 (Sage) [(11*n+6)^3 for n in (0..40)] # _G. C. Greubel_, Sep 19 2019 %o A017463 (GAP) List([0..40], n-> (11*n+6)^3); # _G. C. Greubel_, Sep 19 2019 %Y A017463 Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), this sequence (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12). %K A017463 nonn,easy %O A017463 0,1 %A A017463 _N. J. A. Sloane_