This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017469 #17 Sep 08 2022 08:44:42 %S A017469 10077696,118587876497,10578455953408,208728361158759, %T A017469 1953125000000000,11694146092834141,51998697814228992, %U A017469 186940255267540403,572994802228616704,1551328215978515625,3802961274698203136 %N A017469 a(n) = (11*n + 6)^9. %H A017469 Vincenzo Librandi, <a href="/A017469/b017469.txt">Table of n, a(n) for n = 0..10000</a> %H A017469 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1). %F A017469 From _G. C. Greubel_, Sep 19 2019: (Start) %F A017469 G.f.: (10077696 +118487099537*x +9393030684758*x^2 +108279046743524*x^3 + 327643477452290*x^4 +311158545054314*x^5 +92052268491098*x^6 + 6938490608252*x^7 +68699945486*x^8 +1953125*x^9)/(1-x)^10. %F A017469 E.g.f.: (10077696 +118577798801*x +5170645139055*x^2 +29558124475055*x^3 +49216997902380*x^4 +32588442284937*x^5 +9880686605790*x^6 + 1438737834930*x^7 +96461496450*x^8 +2357947691*x^9)*exp(x). (End) %p A017469 seq((11*n+6)^9, n=0..20); # _G. C. Greubel_, Sep 19 2019 %t A017469 (11*Range[0,20]+6)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210, 120,-45,10,-1}, {10077696, 118587876497,10578455953408, 208728361158759, 1953125000000000,11694146092834141,51998697814228992,186940255267540403, 572994802228616704, 1551328215978515625}, 20] (* _Harvey P. Dale_, Jan 15 2019 *) %o A017469 (Magma) [(11*n+6)^9: n in [0..20]]; // _Vincenzo Librandi_, Sep 04 2011 %o A017469 (PARI) vector(20, n, (11*n-5)^9) \\ _G. C. Greubel_, Sep 19 2019 %o A017469 (Sage) [(11*n+6)^9 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019 %o A017469 (GAP) List([0..20], n-> (11*n+6)^9); # _G. C. Greubel_, Sep 19 2019 %Y A017469 Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), this sequence (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12). %K A017469 nonn,easy %O A017469 0,1 %A A017469 _N. J. A. Sloane_