cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017471 a(n) = (11*n + 6)^11.

This page as a plain text file.
%I A017471 #15 Sep 08 2022 08:44:42
%S A017471 362797056,34271896307633,8293509467471872,317475837322472439,
%T A017471 4882812500000000000,43513917611435838661,269561249468963094528,
%U A017471 1287831418538085836267,5062982072492057196544,17103393581163134765625
%N A017471 a(n) = (11*n + 6)^11.
%H A017471 Vincenzo Librandi, <a href="/A017471/b017471.txt">Table of n, a(n) for n = 0..10000</a>
%H A017471 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
%F A017471 From _G. C. Greubel_, Sep 19 2019: (Start)
%F A017471 G.f.: (362797056 +34267542742961*x +7882270656385972*x^2 + 220215589053761433*x^3 +1612934439380337744*x^4 +4065965093212217778*x^5 +3893323100536505064*x^6 +1409984186533172778*x^7 +173024396961630192* x^8 +5347957556678781*x^9 +17591600106916*x^10 +48828125 x^11)/(1-x)^12.
%F A017471 E.g.f.: (362797056 +34271533510577*x +4112483018826831*x^2 + 48783020707697111*x^3 +152605546678854500*x^4 +184932081242538212*x^5 + 104853627173466171*x^6 +30701237124182097*x^7 +4849119426541500*x^8 + 411237867048855*x^9 +17404011907271*x^10 +285311670611*x^11)*exp(x). (End)
%p A017471 seq((11*n+6)^11, n=0..20); # _G. C. Greubel_, Sep 19 2019
%t A017471 (11*Range[20] -5)^11 (* _G. C. Greubel_, Sep 19 2019 *)
%o A017471 (Magma) [(11*n+6)^11: n in [0..10]]; // _Vincenzo Librandi_, Sep 04 2011
%o A017471 (PARI) vector(20, n, (11*n-5)^11) \\ _G. C. Greubel_, Sep 19 2019
%o A017471 (Sage) [(11*n+6)^11 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019
%o A017471 (GAP) List([0..20], n-> (11*n+6)^11); # _G. C. Greubel_, Sep 19 2019
%Y A017471 Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), this sequence (m=11), A017472 (m=12).
%K A017471 nonn,easy
%O A017471 0,1
%A A017471 _N. J. A. Sloane_