This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017472 #17 Sep 08 2022 08:44:42 %S A017472 2176782336,582622237229761,232218265089212416,12381557655576425121, %T A017472 244140625000000000000,2654348974297586158321,19408409961765342806016, %U A017472 106890007738661124410161,475920314814253376475136,1795856326022129150390625 %N A017472 a(n) = (11*n + 6)^12. %H A017472 Vincenzo Librandi, <a href="/A017472/b017472.txt">Table of n, a(n) for n = 0..10000</a> %H A017472 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1). %F A017472 From _G. C. Greubel_, Sep 19 2019: (Start) %F A017472 G.f.: (2176782336 +582593939059393*x +224644345794247731*x^2 + 9408164121360836975*x^3 +101126771751016700469*x^4 + 380284494715132979466*x^5 +569002784856695826846*x^6 + 350628073514443644414*x^7 +85353518454518704170*x^8 + 7136462627993219301*x^9 +146435479642729343*x^10 +281471802882531*x^11 +244140625*x^12)/(1-x)^13. %F A017472 E.g.f.: (2176782336 +582620060447425*x +115526511395767615*x^2 + 1947775120807282470*x^3 +8166890561727393221*x^4 + 12959517969262230432 *x^5 +9583714050157484644*x^6 +3701592580215241932*x^7 + 793530834460904067*x^8 +96520289732086275*x^9 +6542481918780841*x^10 + 227678713147578*x^11 +3138428376721*x^12)*exp(x). (End) %p A017472 seq((11*n+6)^12, n=0..20); # _G. C. Greubel_, Sep 19 2019 %t A017472 (11*Range[0,20]+6)^12 (* _Harvey P. Dale_, Sep 22 2012 *) %o A017472 (Magma) [(11*n+6)^12: n in [0..10]]; // _Vincenzo Librandi_, Sep 04 2011 %o A017472 (PARI) vector(20, n, (11*n-5)^12) \\ _G. C. Greubel_, Sep 19 2019 %o A017472 (Sage) [(11*n+6)^12 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019 %o A017472 (GAP) List([0..20], n-> (11*n+6)^12); # _G. C. Greubel_, Sep 19 2019 %Y A017472 Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), this sequence (m=12). %K A017472 nonn,easy %O A017472 0,1 %A A017472 _N. J. A. Sloane_