This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017477 #22 Sep 08 2022 08:44:42 %S A017477 16807,1889568,20511149,102400000,345025251,916132832,2073071593, %T A017477 4182119424,7737809375,13382255776,21924480357,34359738368, %U A017477 51888844699,75937500000,108175616801,150536645632,205236901143 %N A017477 a(n) = (11*n + 7)^5. %H A017477 Vincenzo Librandi, <a href="/A017477/b017477.txt">Table of n, a(n) for n = 0..10000</a> %H A017477 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A017477 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0) = 16807, a(1) = 1889568, a(2) = 20511149, a(3) = 102400000, a(4) = 345025251, a(5) = 916132832. - _Harvey P. Dale_, Jan 16 2013 %F A017477 From _G. C. Greubel_, Sep 19 2019: (Start) %F A017477 G.f.: (16807 +1788726*x +9425846*x^2 +7340486*x^3 +753231*x^4 +1024*x^5 )/(1-x)^6. %F A017477 E.g.f.: (16807 +1872761*x +8374410*x^2 +7753075*x^3 +2122945*x^4 +161051 *x^5)*exp(x). (End) %p A017477 seq((11*n+7)^5, n=0..30); # _G. C. Greubel_, Sep 19 2019 %t A017477 (11 * Range[0, 30] + 7)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {16807, 1889568, 20511149, 102400000, 345025251, 916132832}, 30] (* _Harvey P. Dale_, Jan 16 2013 *) %o A017477 (Magma) [(11*n+7)^5: n in [0..30]]; // _Vincenzo Librandi_, Sep 04 2011 %o A017477 (PARI) vector(30, n, (11*n-4)^5) \\ _G. C. Greubel_, Sep 19 2019 %o A017477 (Sage) [(11*n+7)^5 for n in (0..30)] # _G. C. Greubel_, Sep 19 2019 %o A017477 (GAP) List([0..30], n-> (11*n+7)^5); # _G. C. Greubel_, Sep 19 2019 %Y A017477 Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), this sequence (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12). %K A017477 nonn,easy %O A017477 0,1 %A A017477 _N. J. A. Sloane_