cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017480 a(n) = (11*n + 7)^8.

This page as a plain text file.
%I A017480 #18 Sep 08 2022 08:44:42
%S A017480 5764801,11019960576,500246412961,6553600000000,45767944570401,
%T A017480 218340105584896,806460091894081,2478758911082496,6634204312890625,
%U A017480 15938480745308416,35114532758015841,72057594037927936,139353667211683681,256289062500000000,451447246258894081
%N A017480 a(n) = (11*n + 7)^8.
%H A017480 Vincenzo Librandi, <a href="/A017480/b017480.txt">Table of n, a(n) for n = 0..10000</a>
%H A017480 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F A017480 From _G. C. Greubel_, Sep 19 2019: (Start)
%F A017480 G.f.: (5764801 +10968077367*x +401274300613*x^2 +2447616620803*x^3 + 3869465113539*x^4 +1725294430213*x^5 +185763408247*x^6 +2562300801*x^7 + 65536*x^8)/(1-x)^9.
%F A017480 E.g.f.: (5764801 +11014195775*x +239106128305*x^2 +847652479674*x^3 + 937956207111*x^4 +417408438678*x^5 +82366957134*x^6 +7093330244*x^7 + 214358881*x^8)*exp(x). (End)
%p A017480 seq((11*n+7)^8, n=0..20); # _G. C. Greubel_, Sep 19 2019
%t A017480 (11*Range[0,20]+7)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36, -9,1}, {5764801,11019960576, 500246412961,6553600000000, 45767944570401, 218340105584896,806460091894081,2478758911082496,6634204312890625}, 20] (* _Harvey P. Dale_, Mar 30 2016 *)
%o A017480 (Magma) [(11*n+7)^8: n in [0..20]]; // _Vincenzo Librandi_, Sep 04 2011
%o A017480 (PARI) vector(20, n, (11*n-4)^8) \\ _G. C. Greubel_, Sep 19 2019
%o A017480 (Sage) [(11*n+7)^8 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019
%o A017480 (GAP) List([0..20], n-> (11*n+7)^8); # _G. C. Greubel_, Sep 19 2019
%Y A017480 Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), this sequence (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).
%K A017480 nonn,easy
%O A017480 0,1
%A A017480 _N. J. A. Sloane_