This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017481 #26 Sep 08 2022 08:44:42 %S A017481 40353607,198359290368,14507145975869,262144000000000, %T A017481 2334165173090451,13537086546263552,58871586708267913, %U A017481 208215748530929664,630249409724609375,1689478959002692096,4108400332687853397,9223372036854775808,19370159742424031659,38443359375000000000 %N A017481 a(n) = (11*n + 7)^9. %H A017481 Vincenzo Librandi, <a href="/A017481/b017481.txt">Table of n, a(n) for n = 0..10000</a> %H A017481 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1). %F A017481 From _G. C. Greubel_, Sep 19 2019: (Start) %F A017481 G.f.: (40353607 +197955754298*x +12525368984504*x^2 +125993865875030*x^3 +341752101417866*x^4 +292702580123078*x^5 +77396622719912*x^6 + 5045081881706*x^7 +38440737935*x^8 +262144*x^9)/(1-x)^10. %F A017481 E.g.f.: (40353607 +198318936761*x +7055233874370*x^2 +36536266598315*x^3 +57159943839075*x^4 +36196841476257*x^5 +10604280696240*x^6 + 1501876268970*x^7 +98390726379*x^8 +2357947691*x^9)*exp(x). (End) %p A017481 seq((11*n+7)^9, n=0..20); # _G. C. Greubel_, Sep 19 2019 %t A017481 (11Range[0,20]+7)^9 (* _Harvey P. Dale_, Mar 23 2011 *) %o A017481 (Magma) [(11*n+7)^9: n in [0..20]]; // _Vincenzo Librandi_, Sep 04 2011 %o A017481 (Maxima) makelist((11*n+7)^9, n, 0, 30); /* _Martin Ettl_, Oct 21 2012 */ %o A017481 (PARI) a(n) = (11*n+7)^9; \\ _Altug Alkan_, Sep 08 2018 %o A017481 (Sage) [(11*n+7)^9 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019 %o A017481 (GAP) List([0..20], n-> (11*n+7)^9); # _G. C. Greubel_, Sep 19 2019 %Y A017481 Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), this sequence (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12). %K A017481 nonn,easy %O A017481 0,1 %A A017481 _N. J. A. Sloane_