This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017483 #19 Aug 14 2025 05:54:19 %S A017483 1977326743,64268410079232,12200509765705829,419430400000000000, %T A017483 6071163615208263051,52036560683837093888,313726685568359708377, %U A017483 1469170321634239709184,5688000922764599609375,18982985583354248390656,56239892154164025151533,151115727451828646838272 %N A017483 a(n) = (11*n + 7)^11. %H A017483 Vincenzo Librandi, <a href="/A017483/b017483.txt">Table of n, a(n) for n = 0..10000</a> %H A017483 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1). %F A017483 From _G. C. Greubel_, Sep 19 2019: (Start) %F A017483 G.f.: (1977326743 +64244682158316*x +11429419348320083*x^2 + 277265562864875904*x^3 +1829094388304154510*x^4 +4212702849829094280*x^5 +3698421546351487230*x^6 +1221731311784947392*x^7 +134444370899578971* x^8 +3566547693499340*x^9 +8649705527727*x^10 +4194304*x^11)/(1-x)^12. %F A017483 E.g.f.: (1977326743 +64266432752489*x +6035987461437054*x^2 + 63836945659298911*x^3 +186099500089146160*x^4 +214611357085098248*x^5 + 117178874627032680*x^6 +33290649534885897*x^7 +5128288643417445*x^8 + 425762824825415*x^9 +17689323577882*x^10 +285311670611*x^11)*exp(x). (End) %p A017483 seq((11*n+7)^11, n=0..20); # _G. C. Greubel_, Sep 19 2019 %t A017483 (11*Range[21] -4)^11 (* _G. C. Greubel_, Sep 19 2019 *) %o A017483 (Magma) [(11*n+7)^11: n in [0..20]]; // _Vincenzo Librandi_, Sep 04 2011 %o A017483 (PARI) vector(20, n, (11*n-4)^11) \\ _G. C. Greubel_, Sep 19 2019 %o A017483 (Sage) [(11*n+7)^11 for n in (0..20)] # _G. C. Greubel_, Sep 19 2019 %o A017483 (GAP) List([0..20], n-> (11*n+7)^11); # _G. C. Greubel_, Sep 19 2019 %Y A017483 Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), this sequence (m=11), A017484 (m=12). %K A017483 nonn,easy %O A017483 0,1 %A A017483 _N. J. A. Sloane_