cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017492 a(n) = (11*n + 8)^8.

This page as a plain text file.
%I A017492 #12 Jul 02 2024 14:11:16
%S A017492 16777216,16983563041,656100000000,7984925229121,53459728531456,
%T A017492 248155780267521,899194740203776,2724905250390625,7213895789838336,
%U A017492 17181861798319201,37588592026706176,76686282021340161,147578905600000000,270281038127131201,474373168346071296
%N A017492 a(n) = (11*n + 8)^8.
%H A017492 G. C. Greubel, <a href="/A017492/b017492.txt">Table of n, a(n) for n = 0..1000</a>
%H A017492 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F A017492 From _G. C. Greubel_, Sep 22 2019: (Start)
%F A017492 G.f.: (16777216 +16832568097*x +503851912407*x^2 +2690024212453*x^3 + 3790496103139*x^4 +1500946746723*x^5 +139306025317*x^6 +1475730007*x^7 + 6561*x^8)/(1-x)^9.
%F A017492 E.g.f.: (16777216 +16966785825*x +311074825567*x^2 +1011259856838*x^3 + 1057862922501*x^4 +451919091162*x^5 +86384857482*x^6 +7249227612*x^7 + 214358881*x^8)*exp(x). (End)
%p A017492 seq((11*n+8)^8, n=0..20); # _G. C. Greubel_, Sep 22 2019
%t A017492 (11*Range[21] -3)^8 (* _G. C. Greubel_, Sep 22 2019 *)
%t A017492 LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{16777216,16983563041,656100000000,7984925229121,53459728531456,248155780267521,899194740203776,2724905250390625,7213895789838336},20] (* _Harvey P. Dale_, Jul 02 2024 *)
%o A017492 (PARI) vector(20, n, (11*n-3)^8) \\ _G. C. Greubel_, Sep 22 2019
%o A017492 (Magma) [(11*n+8)^8: n in [0..20]]; // _G. C. Greubel_, Sep 22 2019
%o A017492 (Sage) [(11*n+8)^8 for n in (0..20)] # _G. C. Greubel_, Sep 22 2019
%o A017492 (GAP) List([0..20], n-> (11*n+8)^8); # _G. C. Greubel_, Sep 22 2019
%Y A017492 Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), this sequence (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
%K A017492 nonn,easy
%O A017492 0,1
%A A017492 _N. J. A. Sloane_
%E A017492 More terms added by _G. C. Greubel_, Sep 22 2019