cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017493 a(n) = (11*n + 8)^9.

This page as a plain text file.
%I A017493 #21 Sep 08 2022 08:44:42
%S A017493 134217728,322687697779,19683000000000,327381934393961,
%T A017493 2779905883635712,15633814156853823,66540410775079424,
%U A017493 231616946283203125,692533995824480256,1838459212420154507,4435453859151328768,9892530380752880769,20661046784000000000,40812436757196811351
%N A017493 a(n) = (11*n + 8)^9.
%H A017493 G. C. Greubel, <a href="/A017493/b017493.txt">Table of n, a(n) for n = 0..1000</a>
%H A017493 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F A017493 From _G. C. Greubel_, Sep 22 2019: (Start)
%F A017493 G.f.: (134217728 +321345520499*x +16462162819970*x^2 +145056774666656*x^3 +353127201685502*x^4 +272712961891082*x^5 +64342728755486*x^6 + 3608087683520*x^7 +20660849954*x^8 +19683*x^9)/(1-x)^10.
%F A017493 E.g.f.: (134217728 +322553480051*x +9518879411085*x^2 +44883477211595*x^3 +66132730395270*x^4 +40107394890717*x^5 +11363589456450*x^6 + 1566417779322*x^7 +100319956308*x^8 +2357947691*x^9)*exp(x). (End)
%p A017493 seq((11*n+8)^9, n=0..20); # _G. C. Greubel_, Sep 22 2019
%t A017493 (11Range[0,10]+8)^9  (* _Harvey P. Dale_, Apr 06 2011 *)
%o A017493 (Maxima) makelist( (11*n+8)^9, n, 0, 30); /* _Martin Ettl_, Oct 21 2012 */
%o A017493 (PARI) vector(20, n, (11*n-3)^9) \\ _G. C. Greubel_, Sep 22 2019
%o A017493 (Magma) [(11*n+8)^9: n in [0..20]]; // _G. C. Greubel_, Sep 22 2019
%o A017493 (Sage) [(11*n+8)^9 for n in (0..20)] # _G. C. Greubel_, Sep 22 2019
%o A017493 (GAP) List([0..20], n-> (11*n+8)^9); # _G. C. Greubel_, Sep 22 2019
%Y A017493 Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), this sequence (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
%K A017493 nonn,easy
%O A017493 0,1
%A A017493 _N. J. A. Sloane_
%E A017493 More terms added by _G. C. Greubel_, Sep 22 2019