This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017495 #14 Sep 08 2022 08:44:42 %S A017495 8589934592,116490258898219,17714700000000000,550329031716248441, %T A017495 7516865509350965248,62050608388552823487,364375289404334925824, %U A017495 1673432436896142578125,6382393305518410039296,21048519522998348950643,61759259534823101765632,164621598066108688876929 %N A017495 a(n) = (11*n + 8)^11. %H A017495 G. C. Greubel, <a href="/A017495/b017495.txt">Table of n, a(n) for n = 0..1000</a> %H A017495 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1). %F A017495 From _G. C. Greubel_, Sep 22 2019: (Start) %F A017495 G.f.: (8589934592 +116387179683115*x +16317383828904444*x^2 + 345439099017920655*x^3 +2056463723815998816*x^4 +4330360244540059158*x^5 +3485249533342266888*x^6 +1049164126934199606*x^7 +103278745612305120* x^8 +2335591020671359*x^9 +4049563043900*x^10 +177147*x^11)/(1-x)^12. %F A017495 E.g.f.: (8589934592 +116481668963627*x +8740864036069077*x^2 + 82922398983834751*x^3 +225890484585013050*x^4 +248275055013875318*x^5 + 130670920341658389*x^6 +36045281196709257*x^7 +5418280840195080*x^8 + 440547156847985*x^9 +17974635248493*x^10 +285311670611*x^11)*exp(x). (End) %p A017495 seq((11*n+8)^11, n=0..20); # _G. C. Greubel_, Sep 22 2019 %t A017495 (11*Range[0,20]+8)^11 (* _Harvey P. Dale_, Dec 18 2011 *) %o A017495 (PARI) vector(20, n, (11*n-3)^11) \\ _G. C. Greubel_, Sep 22 2019 %o A017495 (Magma) [(11*n+8)^11: n in [0..20]]; // _G. C. Greubel_, Sep 22 2019 %o A017495 (Sage) [(11*n+8)^11 for n in (0..20)] # _G. C. Greubel_, Sep 22 2019 %o A017495 (GAP) List([0..20], n-> (11*n+8)^11); # _G. C. Greubel_, Sep 22 2019 %Y A017495 Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), this sequence (m=11), A017496 (m=12). %K A017495 nonn,easy %O A017495 0,1 %A A017495 _N. J. A. Sloane_ %E A017495 More terms added by _G. C. Greubel_, Sep 22 2019