cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017501 a(n) = (11*n + 9)^5.

This page as a plain text file.
%I A017501 #20 Sep 08 2022 08:44:42
%S A017501 59049,3200000,28629151,130691232,418195493,1073741824,2373046875,
%T A017501 4704270176,8587340257,14693280768,23863536599,37129300000,
%U A017501 55730836701,81136812032,115063617043,159494694624
%N A017501 a(n) = (11*n + 9)^5.
%H A017501 G. C. Greubel, <a href="/A017501/b017501.txt">Table of n, a(n) for n = 0..1000</a>
%H A017501 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A017501 a(0)=59049, a(1)=3200000, a(2)=28629151, a(3)=130691232, a(4)=418195493, a(5)=1073741824, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - _Harvey P. Dale_, Jan 25 2013
%F A017501 G.f.: (59049 + 2845706*x + 10314886*x^2 + 5735346*x^3 + 371101*x^4 + 32*x^5) / (1-x)^6. - _Harvey P. Dale_, Jan 25 2013
%F A017501 E.g.f.: (59049 + 3140951*x + 11144100*x^2 + 9057455*x^3 + 2269355*x^4 + 161051*x^5)*exp(x). - _G. C. Greubel_, Oct 28 2019
%p A017501 seq((11*n+9)^5, n=0..20); # _G. C. Greubel_, Oct 28 2019
%t A017501 (11*Range[0,20]+9)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {59049,3200000,28629151,130691232,418195493,1073741824},20] (* _Harvey P. Dale_, Jan 25 2013 *)
%o A017501 (PARI) vector(21, n, (11*n-2)^5) \\ _G. C. Greubel_, Oct 28 2019
%o A017501 (Magma) [(11*n+9)^5: n in [0..20]]; // _G. C. Greubel_, Oct 28 2019
%o A017501 (Sage) [(11*n+9)^5 for n in (0..20)] # _G. C. Greubel_, Oct 28 2019
%o A017501 (GAP) List([0..20], n-> (11*n+9)^5); # _G. C. Greubel_, Oct 28 2019
%Y A017501 Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), this sequence (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
%Y A017501 Subsequence of A000584.
%K A017501 nonn,easy
%O A017501 0,1
%A A017501 _N. J. A. Sloane_