This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017502 #23 Sep 08 2022 08:44:42 %S A017502 531441,64000000,887503681,5489031744,22164361129,68719476736, %T A017502 177978515625,404567235136,832972004929,1586874322944,2839760855281, %U A017502 4826809000000,7858047974841,12332795428864,18755369578009 %N A017502 a(n) = (11*n + 9)^6. %H A017502 G. C. Greubel, <a href="/A017502/b017502.txt">Table of n, a(n) for n = 0..1000</a> %H A017502 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A017502 From _G. C. Greubel_, Oct 28 2019: (Start) %F A017502 G.f.: (531441 + 60279913*x + 450663942*x^2 + 601905542*x^3 + 157316657*x^4 + 4826361*x^5 + 64*x^6)/(1-x)^7. %F A017502 E.g.f.: (531441 + 63468559*x + 380017561*x^2 + 502998210*x^3 + 219907820*x^4 + 35270169*x^5 + 1771561*x^6)*exp(x). (End) %p A017502 seq((11*n+9)^6, n=0..20); # _G. C. Greubel_, Oct 28 2019 %t A017502 (11Range[0,20]+9)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {531441,64000000,887503681,5489031744,22164361129,68719476736, 177978515625}, 20] (* _Harvey P. Dale_, Dec 06 2018 *) %o A017502 (Maxima) makelist((11*n+9)^6, n, 0, 30); /* _Martin Ettl_, Oct 21 2012 */ %o A017502 (PARI) vector(21, n, (11*n-2)^6) \\ _G. C. Greubel_, Oct 28 2019 %o A017502 (Magma) [(11*n+9)^6: n in [0..20]]; // _G. C. Greubel_, Oct 28 2019 %o A017502 (Sage) [(11*n+9)^6 for n in (0..20)] # _G. C. Greubel_, Oct 28 2019 %o A017502 (GAP) List([0..20], n-> (11*n+9)^6); # _G. C. Greubel_, Oct 28 2019 %Y A017502 Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), this sequence (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12). %Y A017502 Subsequence of A001014. %K A017502 nonn,easy %O A017502 0,1 %A A017502 _N. J. A. Sloane_