This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017503 #23 Nov 12 2022 17:50:31 %S A017503 4782969,1280000000,27512614111,230539333248,1174711139837, %T A017503 4398046511104,13348388671875,34792782221696,80798284478113, %U A017503 171382426877952,337931541778439,627485170000000,1107984764452581,1874584905187328,3057125241215467,4828861374436224 %N A017503 a(n) = (11*n + 9)^7. %H A017503 G. C. Greubel, <a href="/A017503/b017503.txt">Table of n, a(n) for n = 0..1000</a> %H A017503 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1). %F A017503 a(n) = A001015(A017497(n)). - _Michel Marcus_, Nov 21 2013 %F A017503 From _G. C. Greubel_, Oct 28 2019: (Start) %F A017503 G.f.: (4782969 + 1241736248*x + 17406537243*x^2 + 46010574096*x^3 + 29404476791*x^4 + 4084486872*x^5 + 62747493*x^6 + 128*x^7)/(1-x)^8. %F A017503 E.g.f.: (4782969 + 1275217031*x + 12478698540*x^2 + 25306117991*x^3 + 17188094770*x^4 + 4676276836*x^5 + 520838934*x^6 + 19487171*x^7)*exp(x). (End) %p A017503 A017503:=n->(11*n+9)^7; seq(A017503(n), n=0..50); # _Wesley Ivan Hurt_, Nov 20 2013 %t A017503 Table[(11n+9)^7, {n,0,50}] (* _Wesley Ivan Hurt_, Nov 20 2013 *) %t A017503 LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{4782969,1280000000,27512614111,230539333248,1174711139837,4398046511104,13348388671875,34792782221696},20] (* _Harvey P. Dale_, Nov 12 2022 *) %o A017503 (PARI) vector(21, n, (11*n-2)^7) \\ _G. C. Greubel_, Oct 28 2019 %o A017503 (Magma) [(11*n+9)^7: n in [0..20]]; // _G. C. Greubel_, Oct 28 2019 %o A017503 (Sage) [(11*n+9)^7 for n in (0..20)] # _G. C. Greubel_, Oct 28 2019 %o A017503 (GAP) List([0..20], n-> (11*n+9)^7); # _G. C. Greubel_, Oct 28 2019 %Y A017503 Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), this sequence (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12). %Y A017503 Subsequence of A001015. %K A017503 nonn,easy %O A017503 0,1 %A A017503 _N. J. A. Sloane_