cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017504 a(n) = (11*n + 9)^8.

This page as a plain text file.
%I A017504 #14 Sep 08 2022 08:44:42
%S A017504 43046721,25600000000,852891037441,9682651996416,62259690411361,
%T A017504 281474976710656,1001129150390625,2992179271065856,7837433594376961,
%U A017504 18509302102818816,40213853471634241,81573072100000000
%N A017504 a(n) = (11*n + 9)^8.
%H A017504 G. C. Greubel, <a href="/A017504/b017504.txt">Table of n, a(n) for n = 0..1000</a>
%H A017504 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F A017504 a(n) = 9*a(n-1) -36*a(n-2) +84*a(n-3) -126*a(n-4) +126*a(n-5) -84*a(n-6) +36*a(n-7) -9*a(n-8) +a(n-9). - _Harvey P. Dale_, Dec 25 2013
%F A017504 From _G. C. Greubel_, Oct 28 2019: (Start)
%F A017504 G.f.: (43046721 +25212579511*x +624040719397*x^2 +2924616734883*x^3 + 3674923678339*x^4 +1290563847493*x^5 +102733746903*x^6 +815728417*x^7 + 256*x^8)/(1-x)^9.
%F A017504 E.g.f.: (43046721 +25556953279*x +400867042081*x^2 +1200122639562*x^3 +
%F A017504 1189336320711*x^4 +488350759974*x^5 +90501965246*x^6 +7405124980*x^7 + 214358881*x^8)*exp(x). (End)
%p A017504 seq((11*n+9)^8, n=0..20); # _G. C. Greubel_, Oct 28 2019
%t A017504 (11*Range[0,20]+9)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {43046721,25600000000,852891037441,9682651996416, 62259690411361, 281474976710656,1001129150390625, 2992179271065856, 7837433594376961}, 20] (* _Harvey P. Dale_, Dec 25 2013 *)
%o A017504 (PARI) vector(21, n, (11*n-2)^8) \\ _G. C. Greubel_, Oct 28 2019
%o A017504 (Magma) [(11*n+9)^8: n in [0..20]]; // _G. C. Greubel_, Oct 28 2019
%o A017504 (Sage) [(11*n+9)^8 for n in (0..20)] # _G. C. Greubel_, Oct 28 2019
%o A017504 (GAP) List([0..20], n-> (11*n+9)^8); # _G. C. Greubel_, Oct 28 2019
%Y A017504 Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), this sequence (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
%Y A017504 Subsequence of A001016.
%K A017504 nonn,easy
%O A017504 0,1
%A A017504 _N. J. A. Sloane_