This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017511 #22 Sep 08 2022 08:44:42 %S A017511 1000,9261,32768,79507,157464,274625,438976,658503,941192,1295029, %T A017511 1728000,2248091,2863288,3581577,4410944,5359375,6434856,7645373, %U A017511 8998912,10503459,12167000,13997521,16003008,18191447,20570824,23149125,25934336,28934443,32157432 %N A017511 a(n) = (11*n + 10)^3. %H A017511 Vincenzo Librandi, <a href="/A017511/b017511.txt">Table of n, a(n) for n = 0..1000</a> %H A017511 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A017511 G.f.: (1000 + 5261*x + 1724*x^2 + x^3)/(1-x)^4. - _Vincenzo Librandi_, May 26 2016 %F A017511 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3. - _Vincenzo Librandi_, May 26 2016 %F A017511 a(n) = A000578(A017509(n)). - _Michel Marcus_, May 26 2016 %F A017511 E.g.f.: (1000 + 8261*x + 7623*x^2 + 1331*x^3)*exp(x). - _G. C. Greubel_, Oct 29 2019 %p A017511 seq((11*n+10)^3, n=0..40); # _G. C. Greubel_, Oct 29 2019 %t A017511 Table[(11 n + 10)^3, {n, 0, 40}] (* _Vincenzo Librandi_, May 26 2016 *) %t A017511 (11*Range[40] -1)^3 (* _G. C. Greubel_, Oct 29 2019 *) %o A017511 (Maxima) makelist((11*n+10)^3, n,0,40); /* _Martin Ettl_, Oct 21 2012 */ %o A017511 (Magma) [(11*n+10)^3: n in [0..40]]; // _Vincenzo Librandi_, May 26 2016 %o A017511 (PARI) vector(41, n, (11*n-1)^3) \\ _G. C. Greubel_, Oct 29 2019 %o A017511 (Sage) [(11*n+10)^3 for n in (0..40)] # _G. C. Greubel_, Oct 29 2019 %o A017511 (GAP) List([0..40], n-> (11*n+10)^3); # _G. C. Greubel_, Oct 29 2019 %Y A017511 Cf. A000578, A017509. %Y A017511 Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), this sequence (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12). %K A017511 nonn,easy %O A017511 0,1 %A A017511 _N. J. A. Sloane_