This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017516 #14 Sep 08 2022 08:44:43 %S A017516 100000000,37822859361,1099511627776,11688200277601,72301961339136, %T A017516 318644812890625,1113034787454976,3282116715437121,8507630225817856, %U A017516 19925626416901921,42998169600000000,86730203469006241 %N A017516 a(n) = (11*n + 10)^8. %H A017516 G. C. Greubel, <a href="/A017516/b017516.txt">Table of n, a(n) for n = 0..1000</a> %H A017516 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1). %F A017516 a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - _Harvey P. Dale_, Mar 28 2015 %F A017516 From _G. C. Greubel_, Oct 29 2019: (Start) %F A017516 G.f.: (100000000 + 36922859361*x + 762705893527*x^2 + 3145818564613*x^3 + 3526057254339*x^4 + 1096474378339*x^5 + 74441150053*x^6 + 429981687*x^7 + x^8)/(1-x)^9. %F A017516 E.g.f.: (100000000 + 37722859361*x + 511982954527*x^2 + 1417172328726*x^3 + 1333126606581*x^4 + 526757558250*x^5 + 94718280426*x^6 + 7561022348*x^7 + 214358881*x^8)*exp(x). (End) %p A017516 seq((11*n+10)^8, n=0..20); # _G. C. Greubel_, Oct 29 2019 %t A017516 (11*Range[0,20]+10)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84, 36,-9,1}, {100000000,37822859361,1099511627776,11688200277601, 72301961339136, 318644812890625,1113034787454976,3282116715437121, 8507630225817856}, 20] (* _Harvey P. Dale_, Mar 28 2015 *) %o A017516 (PARI) vector(21, n, (11*n-1)^8) \\ _G. C. Greubel_, Oct 29 2019 %o A017516 (Magma) [(11*n+10)^8: n in [0..20]]; // _G. C. Greubel_, Oct 29 2019 %o A017516 (Sage) [(11*n+10)^8 for n in (0..20)] # _G. C. Greubel_, Oct 29 2019 %o A017516 (GAP) List([0..20], n-> (11*n+10)^8); # _G. C. Greubel_, Oct 29 2019 %Y A017516 Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), this sequence (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12). %K A017516 nonn,easy %O A017516 0,1 %A A017516 _N. J. A. Sloane_