cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017518 a(n) = (11*n + 10)^10.

This page as a plain text file.
%I A017518 #14 Sep 08 2022 08:44:43
%S A017518 10000000000,16679880978201,1125899906842624,21611482313284249,
%T A017518 210832519264920576,1346274334462890625,6428888932339941376,
%U A017518 24842341419143568849,81707280688754689024,236736367459211723401
%N A017518 a(n) = (11*n + 10)^10.
%H A017518 G. C. Greubel, <a href="/A017518/b017518.txt">Table of n, a(n) for n = 0..1000</a>
%H A017518 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F A017518 From _G. C. Greubel_, Oct 29 2019: (Start)
%F A017518 G.f.: (10000000000 + 16569880978201*x + 942971216082413*x^2 + 10142326791816440*x^3 + 32281828333734992*x^4 + 35474405873171354*x^5 + 13610715373012154*x^6 + 1612091585741792*x^7 + 40745420207240*x^8 + 61917364213*x^9 + x^10)/(1-x)^11.
%F A017518 E.g.f.: (10000000000 + 16669880978201*x + 546275072443111*x^2 + 3047302039281830*x^3 + 5461469997038605*x^4 + 4142091263396625*x^5 + 1525402079982627*x^6 + 290796919504080*x^7 + 28906295102850*x^8 + 1402978876145*x^9 + 25937424601*x^10)*exp(x). (End)
%p A017518 seq((11*n+10)^10, n=0..20); # _G. C. Greubel_, Oct 29 2019
%t A017518 (11Range[0,20]+10)^10 (* _Harvey P. Dale_, Jul 15 2017 *)
%o A017518 (PARI) vector(21, n, (11*n-1)^10) \\ _G. C. Greubel_, Oct 29 2019
%o A017518 (Magma) [(11*n+10)^10: n in [0..20]]; // _G. C. Greubel_, Oct 29 2019
%o A017518 (Sage) [(11*n+10)^10 for n in (0..20)] # _G. C. Greubel_, Oct 29 2019
%o A017518 (GAP) List([0..20], n-> (11*n+10)^10); # _G. C. Greubel_, Oct 29 2019
%Y A017518 Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), this sequence (m=10), A017519 (m=11), A017520 (m=12).
%K A017518 nonn,easy
%O A017518 0,1
%A A017518 _N. J. A. Sloane_