cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017519 a(n) = (11*n + 10)^11.

This page as a plain text file.
%I A017519 #12 Sep 08 2022 08:44:43
%S A017519 100000000000,350277500542221,36028797018963968,929293739471222707,
%T A017519 11384956040305711104,87507831740087890625,488595558857835544576,
%U A017519 2161283703465490489863,8007313507497959524352,25804264053054077850709
%N A017519 a(n) = (11*n + 10)^11.
%H A017519 G. C. Greubel, <a href="/A017519/b017519.txt">Table of n, a(n) for n = 0..1000</a>
%H A017519 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
%F A017519 From _G. C. Greubel_, Oct 29 2019: (Start)
%F A017519 G.f.: (100000000000 + 349077500542221*x + 31832067012457316*x^2 + 520044490279441677*x^3 + 2534320219783371888*x^4 + 4468718880116382474* x^5 + 3020981097246519528*x^6 + 752734159745082834*x^7 + 58804165095530448*x^8 + 943893657465737*x^9 + 743008370676*x^10 + x^11)/(1-x)^12.
%F A017519 E.g.f.: (100000000000 + 350177500542221*x + 17664171008939763*x^2 + 137043013485992911*x^3 + 328439702272184800*x^4 + 329312102088205280*x^5 + 161493561976042527*x^6 + 42078754876663857*x^7 + 6031583034624180*x^8 + 470893943631155*x^9 + 18545258589715*x^10 + 285311670611*x^11)*exp(x). (End)
%p A017519 seq((11*n+10)^11, n=0..20); # _G. C. Greubel_, Oct 29 2019
%t A017519 (11*Range[0,20]+10)^11 (* _Harvey P. Dale_, Nov 22 2014 *)
%o A017519 (PARI) vector(21, n, (11*n-1)^11) \\ _G. C. Greubel_, Oct 29 2019
%o A017519 (Magma) [(11*n+10)^11: n in [0..20]]; // _G. C. Greubel_, Oct 29 2019
%o A017519 (Sage) [(11*n+10)^11 for n in (0..20)] # _G. C. Greubel_, Oct 29 2019
%o A017519 (GAP) List([0..20], n-> (11*n+10)^11); # _G. C. Greubel_, Oct 29 2019
%Y A017519 Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), this sequence (m=11), A017520 (m=12).
%K A017519 nonn,easy
%O A017519 0,1
%A A017519 _N. J. A. Sloane_