This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017569 #59 Apr 10 2025 17:38:27 %S A017569 4,16,28,40,52,64,76,88,100,112,124,136,148,160,172,184,196,208,220, %T A017569 232,244,256,268,280,292,304,316,328,340,352,364,376,388,400,412,424, %U A017569 436,448,460,472,484,496,508,520,532,544,556,568,580,592,604,616,628 %N A017569 a(n) = 12*n + 4. %C A017569 Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(46). %C A017569 Number of 6 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by 2^m+2m(n-1). Cf. m=2: A008574; m=3: A016933; m=4: A022144; m=5: A017293. - _Sergey Kitaev_, Nov 13 2004 %C A017569 Except for 4, exponents e such that x^e - x^2 + 1 is reducible. %C A017569 If Y and Z are 2-blocks of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - _Milan Janjic_, Oct 28 2007 %C A017569 Terms are perfect squares iff n is a generalized octagonal number (A001082), then n = k*(3*k-2) and a(n) = (2*(3*k-1))^2. - _Bernard Schott_, Feb 26 2023 %H A017569 Vincenzo Librandi, <a href="/A017569/b017569.txt">Table of n, a(n) for n = 0..5000</a> %H A017569 Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>. %H A017569 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A017569 Sergey Kitaev, <a href="http://www.emis.de/journals/INTEGERS/papers/e21/e21.Abstract.html">On multi-avoidance of right angled numbered polyomino patterns</a>, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 4 (2004), Article A21, 20pp. %H A017569 William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>. %H A017569 William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>. %H A017569 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A017569 A089911(a(n)) = 3. - _Reinhard Zumkeller_, Jul 05 2013 %F A017569 Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(2)/12. - _Amiram Eldar_, Dec 12 2021 %F A017569 From _Stefano Spezia_, Feb 25 2023: (Start) %F A017569 O.g.f.: 4*(1 + 2*x)/(1 - x)^2. %F A017569 E.g.f.: 4*exp(x)*(1 + 3*x). (End) %F A017569 From _Elmo R. Oliveira_, Apr 10 2025: (Start) %F A017569 a(n) = 2*a(n-1) - a(n-2). %F A017569 a(n) = 2*A016933(n) = 4*A016777(n) = A016777(4*n+1). (End) %t A017569 12*Range[0,200]+4 (* _Vladimir Joseph Stephan Orlovsky_, Feb 19 2011 *) %o A017569 (Magma) [12*n+4: n in [0..50]]; // _Vincenzo Librandi_, May 04 2011 %o A017569 (Haskell) %o A017569 a017569 = (+ 4) . (* 12) -- _Reinhard Zumkeller_, Jul 05 2013 %Y A017569 Cf. A008594, A017533, A017545, A089911. %Y A017569 Cf. A016777, A016933, A017293, A022144. %Y A017569 Cf. A001082. %K A017569 nonn,easy %O A017569 0,1 %A A017569 _N. J. A. Sloane_