This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017643 #27 Jul 08 2025 06:15:14 %S A017643 1000,10648,39304,97336,195112,343000,551368,830584,1191016,1643032, %T A017643 2197000,2863288,3652264,4574296,5639752,6859000,8242408,9800344, %U A017643 11543176,13481272,15625000,17984728,20570824,23393656,26463592,29791000,33386248,37259704 %N A017643 a(n) = (12n+10)^3. %C A017643 6n + 5 = (12n + 10) / 2 is never a square, as 5 is not a quadratic residue modulo 6. Using this, we can show that each term has an even square part and an even squarefree part, neither part being a power of 2. (Less than 2% of integers have this property - see A339245.) - _Peter Munn_, Dec 14 2020 %H A017643 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuadraticResidue.html">Quadratic Residue</a>. %H A017643 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A017643 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(0)=1000, a(1)=10648, a(2)=39304, a(3)=97336. [_Harvey P. Dale_, Sep 30 2011] %F A017643 a(n) = A017641(n)^3 = A000578(A017641(n)). - _Michel Marcus_, Nov 25 2013 %p A017643 A017643:=(12*n+10)^3; seq(A017643(n), n=0..100); # _Wesley Ivan Hurt_, Nov 25 2013 %t A017643 (12Range[0,30]+10)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{1000,10648,39304,97336},30] (* _Harvey P. Dale_, Sep 30 2011 *) %Y A017643 A000578, A017641 are used in a formula defining this sequence. %Y A017643 Subsequence of A339245. %Y A017643 Cf. A017642, A017644. %K A017643 nonn,easy %O A017643 0,1 %A A017643 _N. J. A. Sloane_