This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017684 #15 Sep 08 2022 08:44:43 %S A017684 1,1024,59049,1048576,9765625,30233088,282475249,1073741824, %T A017684 3486784401,200000000,25937424601,10319560704,137858491849, %U A017684 144627327488,23066015625,1099511627776,2015993900449,3570467226624 %N A017684 Denominator of sum of -10th powers of divisors of n. %C A017684 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017684 G. C. Greubel, <a href="/A017684/b017684.txt">Table of n, a(n) for n = 1..10000</a> %F A017684 Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^10*(1 - x^k)). - _Ilya Gutkovskiy_, May 25 2018 %e A017684 1, 1025/1024, 59050/59049, 1049601/1048576, 9765626/9765625, 30263125/30233088, 282475250/282475249, ... %t A017684 Table[Denominator[DivisorSigma[10, n]/n^10], {n, 1, 20}] (* _G. C. Greubel_, Nov 06 2018 *) %o A017684 (PARI) vector(20, n, denominator(sigma(n, 10)/n^10)) \\ _G. C. Greubel_, Nov 06 2018 %o A017684 (Magma) [Denominator(DivisorSigma(10,n)/n^10): n in [1..20]]; // _G. C. Greubel_, Nov 06 2018 %Y A017684 Cf. A017683. %K A017684 nonn,frac %O A017684 1,2 %A A017684 _N. J. A. Sloane_