This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017695 #20 Apr 02 2024 03:40:05 %S A017695 1,65537,43046722,4295032833,152587890626,1410576509857, %T A017695 33232930569602,281479271743489,1853020231898563,5000076293978081, %U A017695 45949729863572162,30814514057170571,665416609183179842,1088993285370003137,6568408508343827972,18447025552981295105,48661191875666868482 %N A017695 Numerator of sum of -16th powers of divisors of n. %C A017695 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017695 G. C. Greubel, <a href="/A017695/b017695.txt">Table of n, a(n) for n = 1..10000</a> %F A017695 From _Amiram Eldar_, Apr 02 2024: (Start) %F A017695 sup_{n>=1} a(n)/A017696(n) = zeta(16) (A013674). %F A017695 Dirichlet g.f. of a(n)/A017696(n): zeta(s)*zeta(s+16). %F A017695 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017696(k) = zeta(17) (A013675). (End) %t A017695 Table[Numerator[Total[1/Divisors[n]^16]],{n,20}] (* _Harvey P. Dale_, Sep 26 2014 *) %t A017695 Table[Numerator[DivisorSigma[16, n]/n^16], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *) %o A017695 (PARI) vector(20, n, numerator(sigma(n, 16)/n^16)) \\ _G. C. Greubel_, Nov 05 2018 %o A017695 (Magma) [Numerator(DivisorSigma(16,n)/n^16): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018 %Y A017695 Cf. A017696 (denominator), A013674, A013675. %K A017695 nonn,frac %O A017695 1,2 %A A017695 _N. J. A. Sloane_