This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017696 #12 Sep 08 2022 08:44:43 %S A017696 1,65536,43046721,4294967296,152587890625,1410554953728, %T A017696 33232930569601,281474976710656,1853020188851841,5000000000000000, %U A017696 45949729863572161,30814043149172736,665416609183179841 %N A017696 Denominator of sum of -16th powers of divisors of n. %C A017696 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017696 G. C. Greubel, <a href="/A017696/b017696.txt">Table of n, a(n) for n = 1..10000</a> %t A017696 Table[Denominator[DivisorSigma[16, n]/n^16], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *) %o A017696 (PARI) vector(20, n, denominator(sigma(n, 16)/n^16)) \\ _G. C. Greubel_, Nov 05 2018 %o A017696 (Magma) [Denominator(DivisorSigma(16,n)/n^16): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018 %Y A017696 Cf. A017695. %K A017696 nonn,frac %O A017696 1,2 %A A017696 _N. J. A. Sloane_