This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017698 #12 Sep 08 2022 08:44:43 %S A017698 1,131072,129140163,17179869184,762939453125,1410554953728, %T A017698 232630513987207,2251799813685248,16677181699666569,50000000000000000, %U A017698 505447028499293771,554652776685109248,8650415919381337933 %N A017698 Denominator of sum of -17th powers of divisors of n. %C A017698 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017698 G. C. Greubel, <a href="/A017698/b017698.txt">Table of n, a(n) for n = 1..10000</a> %t A017698 Table[Denominator[DivisorSigma[17, n]/n^17], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *) %o A017698 (PARI) vector(20, n, denominator(sigma(n, 17)/n^17)) \\ _G. C. Greubel_, Nov 05 2018 %o A017698 (Magma) [Denominator(DivisorSigma(17,n)/n^17): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018 %Y A017698 Cf. A017697. %K A017698 nonn,frac %O A017698 1,2 %A A017698 _N. J. A. Sloane_