This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017700 #14 Sep 08 2022 08:44:43 %S A017700 1,262144,387420489,68719476736,3814697265625,50779978334208, %T A017700 1628413597910449,18014398509481984,150094635296999121, %U A017700 100000000000000000,5559917313492231481,4437222213480873984 %N A017700 Denominator of sum of -18th powers of divisors of n. %C A017700 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017700 G. C. Greubel, <a href="/A017700/b017700.txt">Table of n, a(n) for n = 1..10000</a> %t A017700 Table[Denominator[Total[Divisors[n]^-18]],{n,20}] (* _Harvey P. Dale_, Sep 25 2012 *) %t A017700 Table[Denominator[DivisorSigma[18, n]/n^18], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *) %o A017700 (PARI) vector(20, n, denominator(sigma(n, 18)/n^18)) \\ _G. C. Greubel_, Nov 05 2018 %o A017700 (Magma) [Denominator(DivisorSigma(18,n)/n^18): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018 %Y A017700 Cf. A017699. %K A017700 nonn,frac %O A017700 1,2 %A A017700 _N. J. A. Sloane_