cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017702 Denominator of sum of -19th powers of divisors of n.

This page as a plain text file.
%I A017702 #12 Sep 08 2022 08:44:43
%S A017702 1,524288,1162261467,274877906944,19073486328125,50779978334208,
%T A017702 11398895185373143,144115188075855872,1350851717672992089,
%U A017702 5000000000000000000,61159090448414546291,79869999842655731712
%N A017702 Denominator of sum of -19th powers of divisors of n.
%C A017702 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
%H A017702 G. C. Greubel, <a href="/A017702/b017702.txt">Table of n, a(n) for n = 1..10000</a>
%t A017702 Table[Denominator[DivisorSigma[19, n]/n^19], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *)
%o A017702 (PARI) vector(20, n, denominator(sigma(n, 19)/n^19)) \\ _G. C. Greubel_, Nov 05 2018
%o A017702 (Magma) [Denominator(DivisorSigma(19,n)/n^19): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018
%Y A017702 Cf. A017701.
%K A017702 nonn,frac
%O A017702 1,2
%A A017702 _N. J. A. Sloane_