This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017707 #18 Apr 02 2024 08:51:14 %S A017707 1,4194305,31381059610,17592190238721,2384185791015626, %T A017707 65810867613760525,3909821048582988050,73786993887028445185, %U A017707 984770902214992292491,1000000238418579520993,81402749386839761113322,92010261758627305193135,3211838877954855105157370,8199490986588434846527625 %N A017707 Numerator of sum of -22nd powers of divisors of n. %C A017707 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017707 G. C. Greubel, <a href="/A017707/b017707.txt">Table of n, a(n) for n = 1..10000</a> %F A017707 From _Amiram Eldar_, Apr 02 2024: (Start) %F A017707 sup_{n>=1} a(n)/A017708(n) = zeta(22). %F A017707 Dirichlet g.f. of a(n)/A017708(n): zeta(s)*zeta(s+22). %F A017707 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017708(k) = zeta(23). (End) %t A017707 Table[Numerator[DivisorSigma[22, n]/n^22], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *) %t A017707 DivisorSigma[-22,Range[20]]//Numerator (* _Harvey P. Dale_, Sep 19 2023 *) %o A017707 (PARI) vector(20, n, numerator(sigma(n, 22)/n^22)) \\ _G. C. Greubel_, Nov 05 2018 %o A017707 (Magma) [Numerator(DivisorSigma(22,n)/n^22): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018 %Y A017707 Cf. A017708 (denominator). %K A017707 nonn,frac %O A017707 1,2 %A A017707 _N. J. A. Sloane_