This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017708 #13 Sep 08 2022 08:44:43 %S A017708 1,4194304,31381059609,17592186044416,2384185791015625, %T A017708 65810851921133568,3909821048582988049,73786976294838206464, %U A017708 984770902183611232881,1000000000000000000000,81402749386839761113321 %N A017708 Denominator of sum of -22nd powers of divisors of n. %C A017708 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017708 G. C. Greubel, <a href="/A017708/b017708.txt">Table of n, a(n) for n = 1..10000</a> %t A017708 Table[Denominator[DivisorSigma[22, n]/n^22], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *) %o A017708 (PARI) vector(20, n, denominator(sigma(n, 22)/n^22)) \\ _G. C. Greubel_, Nov 05 2018 %o A017708 (Magma) [Denominator(DivisorSigma(22,n)/n^22): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018 %Y A017708 Cf. A017707. %K A017708 nonn,frac %O A017708 1,2 %A A017708 _N. J. A. Sloane_