cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017709 Numerator of sum of -23rd powers of divisors of n.

This page as a plain text file.
%I A017709 #18 Apr 02 2024 08:51:43
%S A017709 1,8388609,94143178828,70368752566273,11920928955078126,
%T A017709 65810859767097521,27368747340080916344,590295880727458217985,
%U A017709 8862938119746644274757,50000005960464481733367,895430243255237372246532,1656184514187480740117011,41753905413413116367045798
%N A017709 Numerator of sum of -23rd powers of divisors of n.
%C A017709 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
%H A017709 G. C. Greubel, <a href="/A017709/b017709.txt">Table of n, a(n) for n = 1..1000</a>
%F A017709 From _Amiram Eldar_, Apr 02 2024: (Start)
%F A017709 sup_{n>=1} a(n)/A017710(n) = zeta(23).
%F A017709 Dirichlet g.f. of a(n)/A017710(n): zeta(s)*zeta(s+23).
%F A017709 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017710(k) = zeta(24). (End)
%t A017709 Table[Numerator[Total[Divisors[n]^-23]],{n,12}] (* _Harvey P. Dale_, Oct 19 2012 *)
%t A017709 Table[Numerator[DivisorSigma[23, n]/n^23], {n, 1, 20}] (* _G. C. Greubel_, Nov 03 2018 *)
%o A017709 (PARI) a(n) = numerator(sigma(n, 23)/n^23); \\ _G. C. Greubel_, Nov 03 2018
%o A017709 (Magma) [Numerator(DivisorSigma(23,n)/n^23): n in [1..20]]; // _G. C. Greubel_, Nov 03 2018
%Y A017709 Cf. A017710 (denominator).
%K A017709 nonn,frac
%O A017709 1,2
%A A017709 _N. J. A. Sloane_