This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017711 #22 Apr 02 2024 04:10:07 %S A017711 1,16777217,282429536482,281474993487873,59604644775390626, %T A017711 2369190810383965297,191581231380566414402,4722366764344638701569, %U A017711 79766443077154939399843,500000029802322396083921,9849732675807611094711842,13249475323675656646347131,542800770374370512771595362 %N A017711 Numerator of sum of -24th powers of divisors of n. %C A017711 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %H A017711 G. C. Greubel, <a href="/A017711/b017711.txt">Table of n, a(n) for n = 1..1000</a> %F A017711 Dirichlet g.f.: zeta(s)*zeta(s+24) (for fraction A017711/A017712). - _Franklin T. Adams-Watters_, Sep 11 2005 %F A017711 From _Amiram Eldar_, Apr 02 2024: (Start) %F A017711 sup_{n>=1} a(n)/A017712(n) = zeta(24). %F A017711 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017712(k) = zeta(25). (End) %t A017711 Table[Numerator[DivisorSigma[24, n]/n^24], {n, 1, 20}] (* _G. C. Greubel_, Nov 03 2018 *) %o A017711 (PARI) a(n) = numerator(sigma(n, 24)/n^24); \\ _Michel Marcus_, Nov 01 2013 %o A017711 (Magma) [Numerator(DivisorSigma(24,n)/n^24): n in [1..20]]; // _G. C. Greubel_, Nov 03 2018 %Y A017711 Cf. A017712 (denominator). %K A017711 nonn,frac %O A017711 1,2 %A A017711 _N. J. A. Sloane_