This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017764 #45 Feb 10 2024 11:36:37 %S A017764 1,101,5151,176851,4598126,96560646,1705904746,26075972546, %T A017764 352025629371,4263421511271,46897636623981,473239787751081, %U A017764 4416904685676756,38393094575497956,312629484400483356,2396826047070372396,17376988841260199871,119594570260437846171 %N A017764 a(n) = binomial coefficient C(n,100). %C A017764 More generally, the ordinary generating function for the binomial coefficients C(n,k) is x^k/(1 - x)^(k+1). - _Ilya Gutkovskiy_, Mar 21 2016 %H A017764 G. C. Greubel, <a href="/A017764/b017764.txt">Table of n, a(n) for n = 100..1100</a> %F A017764 G.f.: x^100/(1 - x)^101. - _Ilya Gutkovskiy_, Mar 21 2016 %F A017764 E.g.f.: x^100 * exp(x)/(100)!. - _G. C. Greubel_, Nov 24 2017 %F A017764 From _Amiram Eldar_, Dec 20 2020: (Start) %F A017764 Sum_{n>=100} 1/a(n) = 100/99. %F A017764 Sum_{n>=100} (-1)^n/a(n) = A001787(100)*log(2) - A242091(100)/99! = 63382530011411470074835160268800*log(2) - 1914409165727592211172313915606932788039791776845041612575266508424929 / 43575234518570298227833630584570189723 = 0.9902877001... (End) %t A017764 Table[Binomial[n, 100], {n, 100, 5!}] (* _Vladimir Joseph Stephan Orlovsky_, Sep 25 2008 *) %o A017764 (Sage) [binomial(n, 100) for n in range(100,115)] # _Zerinvary Lajos_, May 23 2009 %o A017764 (PARI) a(n)=binomial(n,100) \\ _Charles R Greathouse IV_, Jun 28 2012 %o A017764 (Python) %o A017764 A017764_list, m = [], [1]*101 %o A017764 for _ in range(10**2): %o A017764 A017764_list.append(m[-1]) %o A017764 for i in range(100): %o A017764 m[i+1] += m[i] # _Chai Wah Wu_, Jan 24 2016 %o A017764 (Magma) [Binomial(n,100): n in [100..130]]; // _G. C. Greubel_, Nov 24 2017 %Y A017764 Cf. similar sequences of the binomial coefficients C(n,k): A000012 (k = 0), A001477 (k = 1), A000217 (k = 2), A000292 (k = 3), A000332 (k = 4), A000389 (k = 5), A000579-A000582 (k = 6..9) A001287 (k = 10), A001288 (k = 11), A010965-A011001 (k = 12..48), A017713-A017763 (k = 49..99), this sequence (k = 100). %Y A017764 Cf. A001787, A242091. %K A017764 nonn,easy %O A017764 100,2 %A A017764 _N. J. A. Sloane_