This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017769 #29 Jun 28 2023 21:44:44 %S A017769 1,53,1378,23426,292825,2869685,22957480,154143080,886322710, %T A017769 4431613550,19499099620,76223753060,266783135710,841392966470, %U A017769 2403979904200,6250347750920,14844575908435,32308782859535,64617565719070,119032357903550,202355008436035 %N A017769 Binomial coefficients C(53,n). %C A017769 Row 53 of A007318. %H A017769 Nathaniel Johnston, <a href="/A017769/b017769.txt">Table of n, a(n) for n = 0..53</a> (full sequence) %F A017769 From _G. C. Greubel_, Nov 13 2018: (Start) %F A017769 G.f.: (1+x)^53. %F A017769 E.g.f.: 1F1(-53; 1; -x), where 1F1 is the confluent hypergeometric function. (End) %p A017769 seq(binomial(53,n), n=0..53); # _Nathaniel Johnston_, Jun 24 2011 %t A017769 With[{k = 53}, Array[Binomial[k, #] &, k + 1, 0]] (* _Michael De Vlieger_, Jul 06 2018 *) %t A017769 With[{nmax = 53}, CoefficientList[Series[Hypergeometric1F1[-53, 1, -x], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Nov 13 2018 *) %o A017769 (Sage) [binomial(53, n) for n in range(54)] # _Zerinvary Lajos_, May 23 2009 %o A017769 (PARI) vector(53, n, n--; binomial(53,n)) \\ _G. C. Greubel_, Nov 13 2018 %o A017769 (Magma) [Binomial(53,n): n in [0..53]]; // _G. C. Greubel_, Nov 13 2018 %Y A017769 Cf. A010926-A011001, A017765-A017768, A017770-A017816. %K A017769 nonn,fini,full,easy %O A017769 0,2 %A A017769 _N. J. A. Sloane_