This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017792 #29 Jun 28 2023 21:52:07 %S A017792 1,76,2850,70300,1282975,18474840,218618940,2186189400,18855883575, %T A017792 142466675900,954526728530,5727160371180,31022118677225, %U A017792 152724276564800,687259244541600,2840671544105280,10830060261901380,38223742100828400,125288932441604200 %N A017792 Binomial coefficients C(76,n). %C A017792 Row 76 of Pascal's triangle (A007318). %H A017792 Nathaniel Johnston, <a href="/A017792/b017792.txt">Table of n, a(n) for n = 0..76</a> (full sequence) %F A017792 G.f.: (x+1)^76. %F A017792 E.g.f.: 1F1(-74; 1; -x), where 1F1 is the confluent hypergeometric function. - _G. C. Greubel_, Nov 15 2018 %p A017792 seq(binomial(76,n), n=0..76); # _Nathaniel Johnston_, Jun 24 2011 %t A017792 Binomial[76, Range[0, 18]] (* _Alonso del Arte_, Dec 01 2017 *) %o A017792 (Sage) [binomial(76, n) for n in range(17)] # _Zerinvary Lajos_, May 28 2009 %o A017792 (PARI) Vec((x+1)^76) \\ _Iain Fox_, Dec 01 2017 %o A017792 (PARI) vector(76, n, n--; binomial(76,n)) \\ _G. C. Greubel_, Nov 15 2018 %o A017792 (Magma) [Binomial(76,n): n in [0..76]]; // _G. C. Greubel_, Nov 15 2018 %o A017792 (GAP) List([0..76], n -> Binomial(76,n)); # _G. C. Greubel_, Nov 15 2018 %Y A017792 Cf. A010926-A011001, A017765-A017791, A017793-A017816. %K A017792 nonn,fini,full,easy %O A017792 0,2 %A A017792 _N. J. A. Sloane_