This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017857 #35 May 29 2025 21:16:28 %S A017857 1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,2,1,0,0,0,0,1,3,3,1,0,0,0,1,4,6,4,1,0, %T A017857 0,1,5,10,10,5,1,0,1,6,15,20,15,6,1,1,7,21,35,35,21,7,2,8,28,56,70,56, %U A017857 28,9,10,36,84,126,126,84,37 %N A017857 Expansion of 1/(1 - x^7 - x^8). %C A017857 Number of compositions of n into parts 7 and 8. - _Joerg Arndt_, Jun 28 2013 %H A017857 Vincenzo Librandi, <a href="/A017857/b017857.txt">Table of n, a(n) for n = 0..1000</a> %H A017857 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,1,1). %F A017857 a(n) = a(n-7) + a(n-8) for n > 7. - _Vincenzo Librandi_, Jun 28 2013 %F A017857 a(n) = Sum_{k=0..floor(n/7)} binomial(k,n-7*k). - _Seiichi Manyama_, Oct 01 2024 %t A017857 CoefficientList[Series[1 / (1 - Total[x^Range[7, 8]]), {x, 0, 70}], x] (* _Vincenzo Librandi_, Jun 28 2013 *) %t A017857 LinearRecurrence[{0,0,0,0,0,0,1,1},{1,0,0,0,0,0,0,1},80] (* _Harvey P. Dale_, Mar 19 2019 *) %o A017857 (Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^7-x^8))); // _Vincenzo Librandi_, Jun 28 2013 %o A017857 (Magma) I:=[1,0,0,0,0,0,0,1]; [n le 8 select I[n] else Self(n-7)+Self(n-8): n in [1..70]]; // _Vincenzo Librandi_, Jun 28 2013 %o A017857 (PARI) x='x+O('x^66); Vec(1/(1-x^7-x^8)) \\ _Altug Alkan_, Oct 07 2018 %Y A017857 Column k=7 of A306713. %K A017857 nonn,easy %O A017857 0,16 %A A017857 _N. J. A. Sloane_