This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017882 #20 Sep 25 2024 15:50:35 %S A017882 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,1,2,3,4,5,6,7,6,5,5,6,8,11,15,21, %T A017882 28,33,36,38,40,43,48,56,71,94,122,152,182,211,239,266,294,332,390, %U A017882 474,586,725,888,1071,1266,1466 %N A017882 Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15). %C A017882 Number of compositions (ordered partitions) of n into parts 9, 10, 11, 12, 13, 14 and 15. - _Ilya Gutkovskiy_, May 27 2017 %H A017882 Vincenzo Librandi, <a href="/A017882/b017882.txt">Table of n, a(n) for n = 0..1000</a> %H A017882 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1). %F A017882 a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) for n>14. - _Vincenzo Librandi_, Jul 01 2013 %t A017882 CoefficientList[Series[1 / (1 - Total[x^Range[9, 15]]),{x, 0, 80}], x] (* _Vincenzo Librandi_, Jul 01 2013 *) %o A017882 (Magma) %o A017882 m:=70; R<x>:=PowerSeriesRing(Integers(), m); %o A017882 Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15))); // _Vincenzo Librandi_, Jul 01 2013 %o A017882 (SageMath) %o A017882 def A017882_list(prec): %o A017882 P.<x> = PowerSeriesRing(ZZ, prec) %o A017882 return P( (1-x)/(1-x-x^9+x^(16)) ).list() %o A017882 A017882_list(80) # _G. C. Greubel_, Sep 25 2024 %Y A017882 Cf. A017877, A017878, A017879, A017880, A017881, A017883, A017884, A017885, A017886. %K A017882 nonn,easy %O A017882 0,20 %A A017882 _N. J. A. Sloane_