This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017884 #23 Sep 25 2024 15:47:52 %S A017884 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,9,10,12,15,19, %T A017884 24,30,37,45,53,61,70,81,95,113,136,165,201,245,296,354,420,496,585, %U A017884 691,819,975,1167,1402,1686,2025 %N A017884 Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17). %C A017884 Number of compositions (ordered partitions) of n into parts 9, 10, 11, 12, 13, 14, 15, 16 and 17. - _Ilya Gutkovskiy_, May 27 2017 %H A017884 Vincenzo Librandi, <a href="/A017884/b017884.txt">Table of n, a(n) for n = 0..1000</a> %H A017884 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1). %F A017884 a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) for n>16. - _Vincenzo Librandi_, Jul 01 2013 %t A017884 CoefficientList[Series[1 / (1 - Total[x^Range[9, 17]]), {x, 0, 60}], x] (* _Harvey P. Dale_, Sep 12 2012 *) %o A017884 (Magma) %o A017884 m:=70; R<x>:=PowerSeriesRing(Integers(), m); %o A017884 Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17))); // _Vincenzo Librandi_, Jul 01 2013 %o A017884 (SageMath) %o A017884 def A017884_list(prec): %o A017884 P.<x> = PowerSeriesRing(ZZ, prec) %o A017884 return P( (1-x)/(1-x-x^9+x^(18)) ).list() %o A017884 A017884_list(70) # _G. C. Greubel_, Sep 25 2024 %Y A017884 Cf. A017877, A017878, A017879, A017880, A017881, A017882, A017883, A017885, A017886. %K A017884 nonn,easy %O A017884 0,20 %A A017884 _N. J. A. Sloane_