This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017885 #20 Sep 25 2024 15:50:10 %S A017885 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,4,5,6,7,8,9,11,12,14,17,21, %T A017885 26,32,39,47,57,67,79,93,110,131,157,189,228,276,332,399,478,571,681, %U A017885 812,969,1158,1387,1662,1994 %N A017885 Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18). %C A017885 Number of compositions (ordered partitions) of n into parts 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18. - _Ilya Gutkovskiy_, May 27 2017 %H A017885 Vincenzo Librandi, <a href="/A017885/b017885.txt">Table of n, a(n) for n = 0..1000</a> %H A017885 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1). %F A017885 a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) +a(n-18), for n>17. - _Vincenzo Librandi_, Jul 01 2013 %t A017885 CoefficientList[Series[1 / (1 - Total[x^Range[9, 18]]), {x, 0, 70}], x] (* _Vincenzo Librandi_, Jul 01 2013 *) %o A017885 (Magma) %o A017885 m:=70; R<x>:=PowerSeriesRing(Integers(), m); %o A017885 Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18))); // _Vincenzo Librandi_, Jul 01 2013 %o A017885 (SageMath) %o A017885 def A017885_list(prec): %o A017885 P.<x> = PowerSeriesRing(ZZ, prec) %o A017885 return P( (1-x)/(1-x-x^9+x^(19)) ).list() %o A017885 A017885_list(70) # _G. C. Greubel_, Sep 25 2024 %Y A017885 Cf. A017877, A017878, A017879, A017880, A017881, A017882, A017883, A017884, A017886. %K A017885 nonn,easy %O A017885 0,19 %A A017885 _N. J. A. Sloane_