This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017890 #23 Nov 06 2024 04:29:52 %S A017890 1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,2,3,4,5,4,3,2,1,0,1,3,6,10, %T A017890 15,18,19,18,15,10,7,7,11,20,35,52,68,80,85,80,69,57,50,55,80,125,186, %U A017890 255,320,365,382,371,341,311,311,367,496,701,966,1251,1508,1693,1779,1770,1716,1701,1826 %N A017890 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14). %C A017890 Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13 and 14. - _Ilya Gutkovskiy_, May 27 2017 %H A017890 Vincenzo Librandi, <a href="/A017890/b017890.txt">Table of n, a(n) for n = 0..1000</a> %H A017890 <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1). %F A017890 a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) for n>13. - _Vincenzo Librandi_, Jul 01 2013 %t A017890 CoefficientList[Series[1 / (1 - Total[x^Range[10, 14]]), {x, 0, 80}], x] (* _Vincenzo Librandi_, Jul 01 2013 *) %o A017890 (Magma) %o A017890 R<x>:=PowerSeriesRing(Integers(), 80); %o A017890 Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14))); // _Vincenzo Librandi_, Jul 01 2013 %o A017890 (SageMath) %o A017890 def A017890_list(prec): %o A017890 P.<x> = PowerSeriesRing(ZZ, prec) %o A017890 return P( (1-x)/(1-x-x^10+x^15) ).list() %o A017890 A017890_list(80) # _G. C. Greubel_, Nov 06 2024 %Y A017890 Cf. A017887. %K A017890 nonn,easy %O A017890 0,22 %A A017890 _N. J. A. Sloane_