This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017896 #27 Nov 08 2024 07:21:00 %S A017896 1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,4,5,6,7,8,9,10,12,13, %T A017896 15,18,22,27,33,40,48,57,68,79,92,107,125,147,174,207,247,295,353,420, %U A017896 499,591,698,823,970,1144,1351,1598,1894,2246,2666,3165,3756,4454,5277,6247,7391,8742,10341,12234 %N A017896 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20). %C A017896 Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20. - _Ilya Gutkovskiy_, May 27 2017 %H A017896 Vincenzo Librandi, <a href="/A017896/b017896.txt">Table of n, a(n) for n = 0..1000</a> %H A017896 <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1). %F A017896 a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) +a(n-18) +a(n-19) +a(n-20), for n>19. - _Vincenzo Librandi_, Jul 01 2013 %p A017896 a:= n-> (Matrix(20, (i, j)-> if (i=j-1) or (j=1 and i in [$10..20]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..80); # _Alois P. Heinz_, Aug 04 2008 %t A017896 CoefficientList[Series[1/(1 -Total[x^Range[10, 20]]), {x,0,80}], x] (* _Vincenzo Librandi_, Jul 01 2013 *) %t A017896 LinearRecurrence[{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1,1,1}, 81] (* _Harvey P. Dale_, Oct 21 2016 *) %o A017896 (Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20))); // _Vincenzo Librandi_, Jul 01 2013 %o A017896 (SageMath) %o A017896 def A017896_list(prec): %o A017896 P.<x> = PowerSeriesRing(ZZ, prec) %o A017896 return P( (1-x)/(1-x-x^10+x^21) ).list() %o A017896 A017896_list(81) # _G. C. Greubel_, Nov 08 2024 %Y A017896 Cf. A017887. %K A017896 nonn,easy %O A017896 0,21 %A A017896 _N. J. A. Sloane_