This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017905 #41 Jul 08 2025 06:19:06 %S A017905 1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10,11,12, %T A017905 14,17,21,26,32,39,47,56,66,77,89,103,120,141,167,199,238,285,341,407, %U A017905 484,573,676,796,937,1104,1303,1541,1826,2167,2574,3058 %N A017905 Expansion of 1/(1 - x^11 - x^12 - ...). %C A017905 a(n) = number of compositions of n in which each part is >= 11. - _Milan Janjic_, Jun 28 2010 %C A017905 a(n+21) equals the number of binary words of length n having at least 10 zeros between every two successive ones. - _Milan Janjic_, Feb 09 2015 %H A017905 Alois P. Heinz, <a href="/A017905/b017905.txt">Table of n, a(n) for n = 0..1000</a> %H A017905 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). %F A017905 G.f.: (x-1)/(x-1+x^11). - _Alois P. Heinz_, Aug 04 2008 %F A017905 For positive integers n and k such that k <= n <= 11*k, and 10 divides n-k, define c(n,k) = binomial(k,(n-k)/10), and c(n,k) = 0, otherwise. Then, for n>=1, a(n+11) = sum(c(n,k), k=1..n). - _Milan Janjic_, Dec 09 2011 %p A017905 a:= n-> (Matrix(11, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$9, 1][i] else 0 fi)^n)[11,11]: seq(a(n), n=0..70); # _Alois P. Heinz_, Aug 04 2008 %t A017905 LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 80] (* _Vladimir Joseph Stephan Orlovsky_, Feb 17 2012 *) %o A017905 (PARI) Vec((x-1)/(x-1+x^11)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012 %K A017905 nonn,easy %O A017905 0,23 %A A017905 _N. J. A. Sloane_