cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017912 Powers of sqrt(2) rounded up.

This page as a plain text file.
%I A017912 #38 Oct 13 2022 19:56:03
%S A017912 1,2,2,3,4,6,8,12,16,23,32,46,64,91,128,182,256,363,512,725,1024,1449,
%T A017912 2048,2897,4096,5793,8192,11586,16384,23171,32768,46341,65536,92682,
%U A017912 131072,185364,262144,370728,524288,741456,1048576,1482911,2097152,2965821,4194304
%N A017912 Powers of sqrt(2) rounded up.
%H A017912 Vincenzo Librandi, <a href="/A017912/b017912.txt">Table of n, a(n) for n = 0..1000</a>
%F A017912 a(n) = A003059(A000079(n)). - _Jason Kimberley_, Oct 28 2016
%F A017912 a(n) = A017910(n)+1 if n is odd. a(n) = A017910(n) = 2^(n/2) if n is even. - _Chai Wah Wu_, Jul 26 2022
%t A017912 Ceiling[(Sqrt[2])^Range[0,40]] (* _Vincenzo Librandi_, Nov 20 2011 *)
%o A017912 (Magma) [Ceiling(Sqrt(2^n)): n in [0..40]]; // _Vincenzo Librandi_, Nov 20 2011
%o A017912 (Python)
%o A017912 from math import isqrt
%o A017912 def A017912(n): return isqrt(1<<n)+1 if n&1 else 1<<(n>>1) # _Chai Wah Wu_, Jul 26 2022
%Y A017912 Cf. A017910, A329202.
%K A017912 nonn,easy
%O A017912 0,2
%A A017912 _N. J. A. Sloane_