This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017979 #28 Jun 18 2024 21:05:19 %S A017979 1,1,1,2,2,3,4,5,6,8,10,12,16,20,25,32,40,50,64,80,101,128,161,203, %T A017979 256,322,406,512,645,812,1024,1290,1625,2048,2580,3250,4096,5160,6501, %U A017979 8192,10321,13003,16384,20642,26007,32768,41285,52015,65536,82570,104031 %N A017979 Powers of cube root of 2 rounded down. %C A017979 Rounding has no effect when n is a multiple of 3, because then obviously (2^(1/3))^n = 2^(n/3). - _Alonso del Arte_, Jan 04 2014 %H A017979 Vincenzo Librandi, <a href="/A017979/b017979.txt">Table of n, a(n) for n = 0..200</a> %e A017979 a(2) = 1 because the cube root of 2 squared is 1.5874... %e A017979 a(3) = 2 because the cube root of 2 cubed is 2 exactly. %e A017979 a(4) = 2 because the cube root of 2 to the fourth power is 2.519842... %t A017979 Table[Floor[(2^(1/3))^n], {n, 0, 49}] (* _Alonso del Arte_, Jan 04 2014 *) %o A017979 (Magma) [Floor(2^(n/3)): n in [0..50]]; // _Vincenzo Librandi_, Jan 06 2014 %o A017979 (Python) %o A017979 from sympy import integer_nthroot %o A017979 def A017979(n): return integer_nthroot(1<<n,3)[0] # _Chai Wah Wu_, Jun 18 2024 %Y A017979 Cf. A017981, A002580. %Y A017979 Sequences of the type: Powers of cube root of (k) rounded down: this sequence (k=2), A017982 (k=3), A017985 (k=4), A017988 (k=5), A017991 (k=6), A017994 (k=7), A018000 (k=9), A018003 (k=10), A018006 (k=11), A018009 (k=12), A018012 (k=13), A018015 (k=14), A018018 (k=15), A018021 (k=16), A018024 (k=17), A018027 (k=18), A018030 (k=19), A018033 (k=20), A018036 (k=21), A018039 (k=22), A018042 (k=23), A018045 (k=24). %K A017979 nonn %O A017979 0,4 %A A017979 _N. J. A. Sloane_ %E A017979 a(44)-a(50) from _Alex Ratushnyak_, Jan 04 2014