cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017980 Powers of cube root of 2 rounded to nearest integer.

This page as a plain text file.
%I A017980 #16 Jul 08 2025 06:20:30
%S A017980 1,1,2,2,3,3,4,5,6,8,10,13,16,20,25,32,40,51,64,81,102,128,161,203,
%T A017980 256,323,406,512,645,813,1024,1290,1625,2048,2580,3251,4096,5161,6502,
%U A017980 8192,10321,13004,16384,20643,26008,32768,41285,52016,65536,82570,104032
%N A017980 Powers of cube root of 2 rounded to nearest integer.
%H A017980 Vincenzo Librandi, <a href="/A017980/b017980.txt">Table of n, a(n) for n = 0..200</a>
%t A017980 Table[Round[2^(n/3)], {n, 0, 50}] (* _Vincenzo Librandi_, Jan 07 2014 *)
%t A017980 Round[Surd[2,3]^Range[0,50]] (* _Harvey P. Dale_, Oct 07 2014 *)
%o A017980 (Magma) [Round(2^(n/3)): n in [0..50]]; // _Vincenzo Librandi_, Jan 07 2014
%o A017980 (Python)
%o A017980 from sympy import integer_nthroot
%o A017980 def A017980(n): return -integer_nthroot(m:=1<<n,3)[0]+integer_nthroot(m<<3,3)[0] # _Chai Wah Wu_, Jun 18 2024
%Y A017980 Cf. powers of cube root of k rounded up: this sequence (k=2), A017983 (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), A018025 (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24).
%K A017980 nonn
%O A017980 0,3
%A A017980 _N. J. A. Sloane_
%E A017980 More terms from _Vincenzo Librandi_, Jan 07 2014